

Driver behavior in Work Zones -Assessing Crash Risk using Naturalistic Driving Study Data

Alabama DOT Pre-Construction Conference, May 2021

Praveen Edara, Ph.D., P.E., PTOE Department Chair and Professor

MU Civil and Environmental Engineering

Work Zone Safety

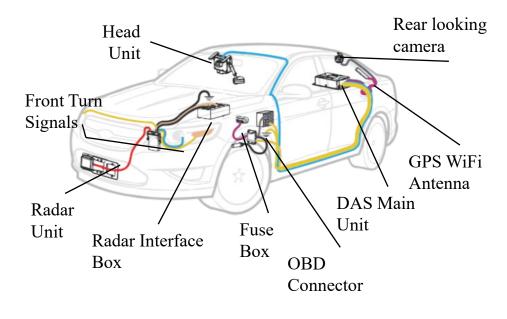
- Work zone crashes continue to be a concern
 - 842 fatalities and 135 worker fatalities (in 2019)
 - 123,000 total crashes and 45,000 injuries (in 2018) (Source: National WZ Safety Clearinghouse)
- Traditional work zone safety research
 - Reliance on crash reports to study effect of geometrics, traffic control
 - Driver behavior effects inferred indirectly from crash reports
- SHRP 2 Naturalistic Driving Study data provides a new avenue to understand work zone safety
 - Vehicle, driver, roadway, and environment variables

Study Objectives

FHWA SHRP2 BAA Project (2016-2020)

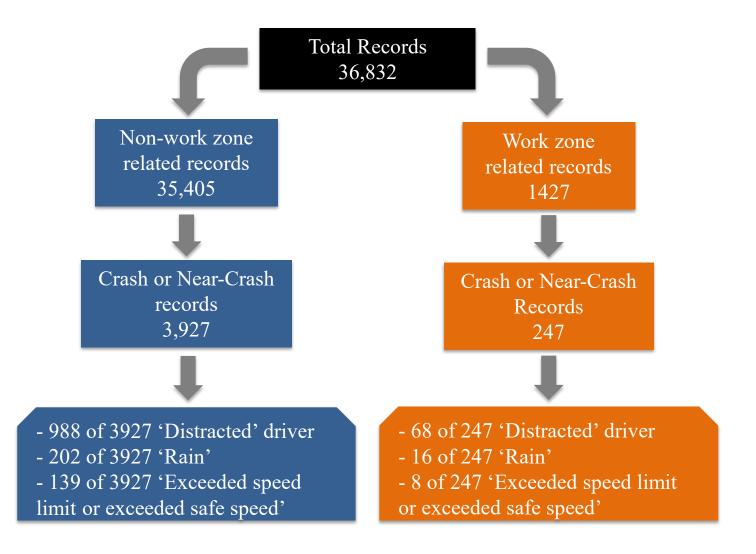
Phase 1

- 1. Develop new methods, algorithms, and visualization techniques to analyze SHRP 2 Safety data related to work zones
- 2. Conduct crash risk and severity analysis for work zone events
- 3. 3D crash recreation in a virtual environment

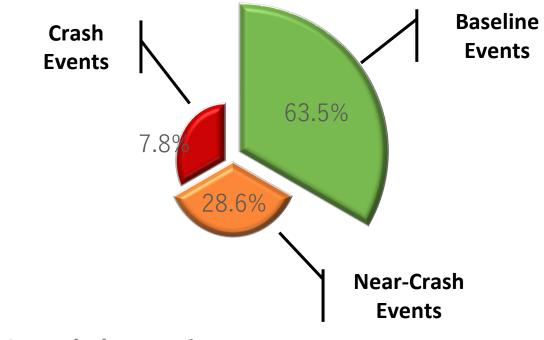

Phase 2

- 1. Implement crash risk prediction models from Phase 1
- 2. Develop a user-friendly tool to estimate crash risk in work zones

SHRP2 NDS Data


Naturalistic Driving Study (NDS)

- 3,542 instrumented vehicles
- 32.5 million vehicle miles
- 1.5 Petabytes of data
- 6 states, 3 years data
- ~4,000 crashes and near-crashes



Source: InSight database (VTTI)

Work Zone Data in NDS

Safety Critical Events in NDS

✓ 699 total observations

Research Results

- Crash causation in work zones insights from analyzing NDS data
- 2. Predicting a crash using pre-crash driver and environment variables
- 3. Recreating 3D crash animations for public education, outreach and countermeasure development
- 4. Implications for countermeasure development

A better understanding of WZ crash causation

- Logistic regression to develop prediction model for safety critical events in work zone
- A dichotomous variable was created by combining crash and near crash (CNC) as one response and baseline as the other
- Explanatory variables
 - Duration of secondary task
 - o Driving behavior
 - Traffic density
 - Locality
 - o Traffic control
 - o Lighting conditions

Odds of a crash happening in a work zone

Risk Factors	Categories	Odds Ratio (95% CI in parenthesis)
Duration of secondary task	>6 secs vs. 0-6 secs	5.46 (3.02-9.87)
Behavior	Violation vs. None	11.91 (4.09-26.45)
	Mistake vs. None	12.63 (2.39-54.30)
	Inattention vs. None	29.06 (11.05-75.64)
	Inexperience vs. None	17.39 *
Traffic density	LOS B vs. LOS A	1.75 (1.12-2.76)
	LOS C vs. LOS A	6.14 (2.939-12.84)
	LOS D vs. LOS A	7.43 (2.30-23.99)
	LOS E vs. LOS A	3.74 (0.61-22.74)
	LOS F vs. LOS A	2.95 (0.25-33.81)

Predicting event outcomes

• Two scenarios for classification algorithm

Scenario	Object	Input Variables	
Casa I	Crash/Near-Crash, vs.	22 driver characteristics +	
Case-I	Baseline events	35 pre-incident variables	
Case-II	Crash, vs.	22 driver characteristics +	
	Near-Crash events	64 pre-incident variables	

• Selected pre-event variables for model development

Input Variables	Selected variables		
Driver characteristics	sex, ageGroup, educ, wrkStat, income, milesLstYr, annualMiles, yrsDriving, numViol, violTypes, numCrash, crash1Sev, crash1Flt, crash2Sev, crash2Flt, crash3Sev, crash3Flt, crash4Sev, crash4Flt, crash5Sev, crash5Flt		
35 pre-incident variables	eventStart, preIncidentManeuver, maneuverJudgment, driverBehavior1, driverBehavior2, driverBehavior3, driverImpairments, frontSeatPassengers, rearSeatPassengers, secondaryTask1, secondaryTask1StartTime, secondaryTask1EndTime, secondaryTask1Outcome, secondaryTask2, secondaryTask2StartTime, secondaryTask2EndTime, secondaryTask2Outcome, secondaryTask3, secondaryTask3StartTime, secondaryTask3EndTime, secondaryTask3Outcome, handsOnTheWheel, driverSeatbeltUse, lighting, weather, surfaceCondition, trafficFlow, trafficDensity, trafficControl, relationToJunction, intersectionInfluence, alignment, grade, locality		
64 pre-incident variables	[35 pre-incident variables] + visual obstruction, vehicle contributing factors, precipitating event, evasiv maneuver, subjectReactionStart, impactProximity, eventEnd, vehicle1SubjectConfig, vehicle2Config, vehicle3Config, eventNature1, incidentType1, vehicle1EvasiveManeuver1, vehicle1PostManeuver1, eventNature2, incidentType2, vehicle1EvasiveManeuver2, vehicle1PostManeuver2, infrastructure, numberOfOtherMotorists, numberOfObjectsAnimals, fault, motorist2Location, motorist2Type, motorist2Maneuver, motorist2Reaction, motorist3Location, motorist3Type, motorist3Maneuver		

Prediction Accuracy

Case-I		Case-II			
Random Forest	t-SNE	Naïve	Random Forest	t-SNE	Naïve
92.6%	89.4%	62.3%	88.9%	62.5%	70.8%

Five most important variables for prediction

Case-I	Case-II	
secondaryTask3Outcome	vehicle1EvasiveManeuver1	
driverBehavior1	eventNature1	
preIncidentManeuver	motorist2Reaction	
yrsDriving	incidentType1	
milesLstYr	subjectReactionStart	

Prediction Tool Development

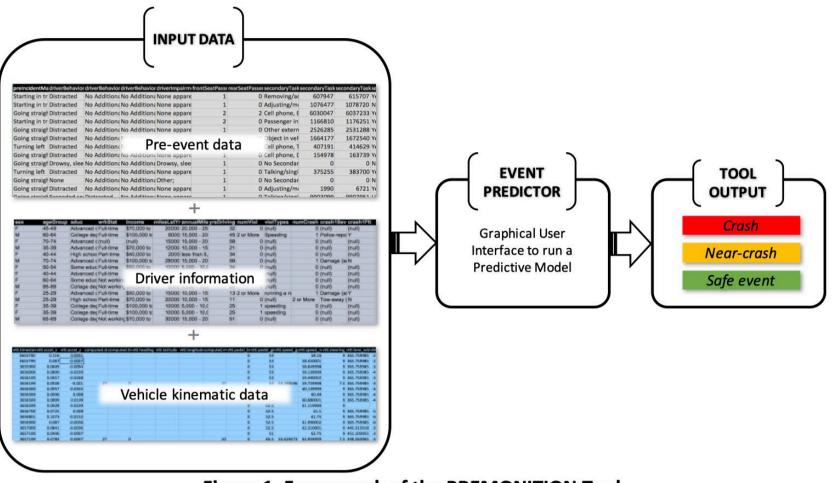


Figure 1. Framework of the PREMONITION Tool

PREMONITION Tool

PREMONITION : Prediction Model using Naturalistic Incident Information

This tool allows a user to proactively predict the occurrence of a safety critical event based on certain pre-event behavior and driver characteristics

1. MODEL SELECTION	2. PRE-EVENT DATA 🗸	3.DRIVER INFORMATION -	4. PREDICTION OUTCOME
--------------------	---------------------	------------------------	-----------------------

What kind of PREMONITION model do you want to try?

Plesae select a model from below:

WORK ZONE Model
 NON-WORK ZONE Model
 YOUNGER DRIVER Model

PREMONITION Interface

• Interface under R plus Shiny library (open source)

PREMONITION for Work Zone : Prediction Model using Naturalistic Incident Information				
1 This tool allows a user to proactively predict the occurrence of a heavior and driver heavior and driver				
1. MODEL SELEC	2. PRE-EVENT DATA + 3.DRIVER INFORMATION + 4. PREDICTION OUTCOME			
	What kind of PREMONITION model do you want to try? Plesae select a model from below:			
	• WORK ZONE Model • NON-WORK ZONE Model			
	O YOUNGER DRIVER Model			

PREMONITION for	Work Zone : Pro	rediction Model using Naturalistic Incident Informatio
	This tool allows a use safety critical event b characteristics	er to proactively predict the occurrence of a based on certain pre-event behavior and driver
^{1.} 2.1	2. PRE-EVENT DATA +	3.DRIVER INFORMATION - 4. PREDICTION OUTCOME
22		MONITION model do you want to try?
	\odot N	• WORK ZONE Model ION-WORK ZONE Model OUNGER DRIVER Model

PREMONITION for Work Zone : Prediction Model using Naturalistic Incident Information				
This tool allows a user to proactively predict the occurrence of a safety critical event based on certain pre-event behavior and driver characteristics				
1. MODEL SELECTION 2. PRE-EVENT DATA - 3.DRIVER INFORMATION - 4. PREDICTION OUTCOME				
This data should include pre-incident event data such as driver behavior, lighting, or secondary tasks. Those data categories must perfore a event. Choose File Ino Tile selected				
FINISHED for PRE-EVENT FILE UPLOADING				

PREMONITION for Work Zone : Prediction Model using Naturalistic Incident Information

This tool allows a user to proactively predict the occurrence of a safety critical event based on certain pre-event behavior and driver characteristics

1. MODEL SELECTION 2. PRE-EVENT DATA - 3.DRIVER INFORMATION - 4. PREDICTION OUTCOME

2.2

This data should include pre-incident event data such as driver behavior, lighting, or secondary tasks. Those data categories must be observed before a event.

Plesae select each input manually.

1. Major DriverBehavior (Recommended: Critical Information)

 NA
 •

 2. Intersection Influence (Recommended: Critical Information)
 •

 NA
 •

 3. Secondary Task (Recommended: Critical Information)
 •

 NA
 •

 4. Secondary Task Outcome (Recommended: Critical Information)
 •

 NA
 •

 5. Pre-Incident Maneuver (Recommended: Critical Information)
 •

 NA
 •

 6. Traffic Density (Recommended: Critical Information)
 •

Interface features – input data

Interface under R plus Shiny library (open source) •

PREMONITION for Work Zone : Prediction	n Model using Naturalistic Incident Information		
This tool allows a user to proactive critical event based on certain pre- characteristics	ly predict the occurrence of a safety event behavior and driver		
1. MODEL SELECTION 2. PRE-EVENT DATA - 3. DRIVER INFORMATION -	4. PREDICTION OUTCOME		
This data should include pre-incident event data such as driver beha observed before a event.	PREMONITION for Work Zone : Prediction Mod	del using Natu	aturalistic Incident Information
Choose File Browse PreEvent_DATA csv Upto	This tool allows a user to proactively predic critical event based on certain pre-event be characteristics	ct the occurrence of shavior and driver	of a safety
FINISHED for PRE-EVENT FILE UPLOADING	1. MODEL SELECTION 2. PRE-EVENT DATA + 3.DRIVER INFORMATION + 4. PR	REDICTION OUTCOME	ε
2.1.2	This data should include driver information data such as gender, age group, o below, if you do not have this file.	or years of driving	PREMONITION for Work Zone : Prediction Model using Naturalistic Incident Information
Pre-Event Data Driver Infomation Crash Risk Output by Event Info Show 10 • entries Searce eventID • anonymousParticipantID • eventStart • preincident	Choose File Browse Driver_DATA.csv Upload.complete		This tool allows a user to proactively predict the occurrence of a safety critical event based on certain pre-event behavior and driver characteristics
evenub anonymous-anticipanub eventstart prencident			1. MODEL SELECTION 2. PRE-EVENT DATA + 3. DRIVER INFORMATION + 4. PREDICTION OUTCOME
1 31577984 888271 330091 Turning left	ALL DONE and RUN PREMONITION MODEL 3.1.2	2	Crash Prediction Outcome:
2 116153473 297164 650017 Going straight. speed	Pre-Event Data Driver Infomation Crash Risk Output by Event Info Show 10 • entries Search:		This is prediction outcome from your selection. You may want to check 'Crash Risk Output by Event Info' tab below
	anonymousParticipantiD ϕ anonymousVehicleID ϕ sex ϕ ageGroup ϕ ex	duc 👌 wrkStat 🗄	Crash Risk is (%)
	Son 1 888271 24333 F 16-19 hig sch	working	65.14286 4.1
		egree Part-time	Model Goodness-of-fit (%) 89.14286
L.		Not	
			Pre-Event Data Driver Information Crash Risk Output by Event Info Show 10 • entries Search:
			CrashRisk 🗄 anonymousParticipantiD 🕸 eventStart 🕴 preincidentManeuver 🕆 maneuverJudgment 🕆 driverBehavior1 👘 driverBehavior2
			1 0.966957047791894 888271 330091 Turning left Unsafe but legal Avoiding other Improper turn, other vehicle
			2 0.590744101633394 297164 650017 Going straight, constant speed Safe and legal None Behaviors

Tool, tutorial, and source code

- PREMONITION Tool <u>https://ycanns.shinyapps.io/app-1/</u>
- Step by step tutorial <u>https://youtu.be/uC-uml-Mmr4</u>
- Source Code -

https://github.com/ycanns/SHRP2NDS/blob/master/Case_I_II_rf_predic tion.r

3D Recreation of a Work Zone Crash

- Successfully tested 3-step workflow to capture crash videos into a simulation engine
- Developed interactive visualizations that provide a sanitized 3D visualization of the event
- 3D recreation allows training simulations and countermeasure development
 - Assessing in-vehicle warnings, messages via DMS using a driving simulator
 - Driver education and public safety announcements

Countermeasures

- 1. Driver behavior in work zones
 - Violations (e.g. speeding), inattention (e.g. distracted driving) found to significantly increase crash risk in work zones
 - Potential countermeasures: active/passive law enforcement presence, speed management, public education, and traffic laws against distracted driving, speeding
- 2. Traffic density in work zones
 - Level of service C/D threshold for spike in crash risk
 - Threshold to deploy smart work zone systems (e.g. queue warning)
- 3. Driver assistance systems and TMC applications
 - PREMONITION tool can be used for making real-time prediction of crash risk

Countermeasures

- 4. Crash animations/simulations can be used for public outreach and countermeasure evaluation
 - Use of Virtual Reality tools (headsets, simulators, etc)
 - e.g., Missouri and Texas are using virtual reality for work zone inspection training
- 5. Crash modification factors (CMFs) extremely lacking for work zones
 - Odds ratios derived in the study akin to CMFs

Contact information

Praveen Edara, Ph.D., PE edarap@missouri.edu Ph: (573) 882-1900

Acknowledgments

FHWA staff

- Charles Fay (Project Manager)
- Yusuf Mohamedshah

Iowa State (RID)

- Shauna Hallmark
- Omar Smadi

Virginia Tech Transportation Institute (NDS)